Hoare-style Specifications as
Correctness Conditions
for Non-Linearizable Concurrent Objects

llya Sergey

PPLV

joint work with
Aleks Nanevski, Anindya Banerjee, and German Andrés Delbianco

| inearizable Concurrent Objects

Linearizability: A Correctness Condition for
Concurrent Objects

MAURICE P. HERLIHY and JEANNETTE M. WING
Carnegie Mellon University

A concurrent object is a data object shared by concurrent processes. Linearizability is a correctness
condition for concurrent objects that exploits the semantics of abstract data types. It permits a high
degree of concurrency, yet it permits programmers to specify and reason about concurrent objects
using known techniques from the sequential domain. Linearizability provides the illusion that each
operation applied by concurrent processes takes effect instantaneously at some point between its
invocation and its response, implying that the meaning of a concurrent object’s operations can be
given by pre- and post-conditions. This paper defines linearizability, compares it to other correctness
conditions, presents and demonstrates a method for proving the correctness of implementations, and
shows how to reason about concurrent objects, given they are linearizable.

Non-overlapping calls to methods of a concurrent object
should appear to take eftect in their sequential order.

| inearizability IS expensive

Laws of Order: Expensive Synchronization in
Concurrent Algorithms Cannot be Eliminated

Hagit Attiya Rachid Guerraoui Danny Hendler
Technion EPFL Ben-Gurion University
hagit@cs.technion.il rachid.guerraoui@epfl.ch hendlerd@cs.bgu.ac.il
Petr Kuznetsov Maged M. Michael Martin Vechev
TU Berlin/Deutsche Telekom Labs IBM T. J. Watson Research Center IBM T. J. Watson Research Center

pkuznets@acm.org magedm@us.ibm.com mtvechev@us.ibm.com

An alternative to linearizability”

The advent of multicore processors as the
standard computing platform will force major
changes in software design.

BY NIR SHAVIT

Data Relaxing the correctness condition would allow
one to iImplement concurrent data structures

Structures poiteey oo
in the
Multicore Age

Alternatives to linearizabillity

* Quiescent Consistency [Aspnes-al:JACM94]

* Quasi-Linearizability [Afek-al:OPODIS10]

* Quantitative Relaxation [Henzinger-al:POPL13]

e Concurrency-Aware Linearizability [Hemed-Rinetzky:PODC14]

* Quantitative Quiescent Consistency [Jagadeesan-Riely:ICALP14]

* Local Linearizability [Haas-al:arXivi5]

Challenges of diversity

* Composing different conditions (CAL, QC, QQC)
INn a single program, which uses multiple objects;

* Providing syntactic proof methods for establishing all
these conditions (akin to linearization points);

 Employing these criteria tor client-side reasoning
(uniformity).

Hoare-style Specifications as
Correctness Conditions
for Non-Linearizable Concurrent Objects

llya Sergey

PPLV

joint work with
Aleks Nanevski, Anindya Banerjee, and German Andrés Delbianco

Hoare-style Specifications

{

"re{Qr@c

/ f concurrent invariants

precondrtion

postcondrtion and protocol

f the Initial state satisfies F then, after e
terminates, the final state satisfies O

(no matter the interference manifested by C).

Hoare-style Specifications

1rre{Qr@c

 Compositional — substitution principle;
* Syntactic proof method — inference rules;

* Uniform — reasoning about objects and their
clients in the same proof system.

Hoare-style Specifications as CAL, QC, QQC

Concurrency-Aware Linearizability (CAL):

Effects of some concurrent method calls should
appear to happen simultaneously.

Quiescent Consistency (QC):

Method calls separated by a period of quiescence
should appear to take effect in their order.

This talk

Quantitative Quiescent Consistency (QQC):

The number of out-of-order method results is bounded
by the number of interfering threads (with a constant factor).

Simple Counting Network

def getAndInc() : nat

Simple Counting Network

def getAndInc() : nat = {
n & &x;
b « (CAS(x, n, n + 1));

if b then
return n;
else getAndInc();
}

high contention location

Simple Counting Network

def getAndInc() : nat = {
b — flip(bal);
res + fetchAndAdd2(x + b);
return res;

}
X
n
bal / 0
b x+1
\

Sequential Execution (T+)

def getAndInc() : nat = {
b — flip(bal);
res + fetchAndAdd2(x + b);
return res;

}
X
bal °
0 x+1

Sequential Execution (T+)

def getAndInc() : nat = {

=P b — flip(bal);
res + fetchAndAdd2(x + b);
return res;

}
X T1.b1=0
bal / °
1 x+1

Sequential Execution (T+)

def getAndInc() : nat = {
b — flip(bal);
-3 res < fetchAndAdd2(x + b);
return res;

}
X T1.b1 =0
bal 2 T1.res1 =0
1 x+1

Sequential Execution (T+)

def getAndInc() : nat = {

=3 b — flip(bal);
res + fetchAndAdd2(x + b);
return res;

}
X T1.b1=0
. 2 __1.reS1 =0
1.0 =

0 x+1
\ 1

Sequential Execution (T+)

def getAndInc()

: nat = {

b — flip(bal);

== res ¢+ fetchAndAdd2(x + b);
return res;

}

bal

x+1

1.01 =0
1.res1 =0
1.2 =
1.ress = 1

Concurrent Execution (T4, T»)

def getAndInc() : nat = {
b — flip(bal);
res + fetchAndAdd2(x + b);
return res;

}
X
bal °
0 x+1

Concurrent Execution (T4, T»)

def getAndInc() : nat = {

=3 b — flip(bal);
res + fetchAndAdd2(x + b);
return res;

}
i 1.01 =0
0
bal /
1 x+1

Concurrent Execution (T4, T»)

def getAndInc() : nat = {

=l == b — flip(bal);
res + fetchAndAdd2(x + b);
return res;

}

1.01 =0
.01 =

bal

0 x+1
\ 1

Concurrent Execution (T4, T»)

def getAndInc() : nat = {
=3 b — flip(bal);
- res < fetchAndAdd2(x + b);
return res;

}
i 1.01=0
0 .01 =

bal o.rest = 1
0 xX+1

Concurrent Execution (T4, T»)

def getAndInc()

: nat = {

- =P b <« flip(bal);

res + fetchAndAdd2(x + b);

return res;

}

bal

/

1.01 =0

.01 =

>.fesq = 1

2.00 =0

Concurrent Execution (T4, T»)

def getAndInc() : nat = {
=3 b — flip(bal);
- res < fetchAndAdd2(x + b);
return res;
}
i 1.01 =0
, 2.01 =1
bal
a (2.I1€S1 = 1)
1 xX+1 __Z_bz — O
3 (__z.l’eSz = OJ

Correctness Conditions for Counting Network

© Fr—etnoitgeirrd ek e-elicoi-=aer=seauentaroreer
- Ry different calls return distinct results (strong concurrent counter)

- Ra: two calls, separated by period of quiescence, take eftect in
their sequential order (QC)

Invariants of the Counting Network

“Tokens”

Every tlip of the balancer grants thread a capability
to add 2 to a counter (x or x+1);

Each of the counters (x and x+1) changes continuously
wrt. even/odd values;

Threads, which gained capabilities but haven't yet
iIncremented, cause one counter to “run ahead” ot another
one, leading to out-of-order anomalies.

J

"Histories”
Sergey-al:ESOP15

Real and Auxiliary State

* Hoare-style specs constrain state, auxiliary or real

 Real state — heap (pointers bal, x, x+1);

* Auxiliary state — any fictional splittable resource,
represented as a PCM (5, @, 0), e.g.,

+ Jokens — disjoint sets;

+ Histories — partial maps with nat as domain.

Tokens and Histories of the Network

tokens of
pending threads

current value

of the balary —) O |— — — >

1 \ history of the counter X+1
@ > | 1 3

history of the counter X

— g |

* New unique tokens are emitted upon calling £1ip();

e Calling fetchAndadd2 () consumes a token and adds
an entry to the history.

Interterence-capturing histories

N={ .02,

\

“timestamp’’, a value written to a counter x or x+1 (0, |, 2, etc.)

Interterence-capturing histories

n={...t»(2),..]
T

\
sets of tokens, held by interfering threads

at the moment the entry has been written

Interterence-capturing histories

ﬂ={...,’[l—>(l,, o)

\
a token, spent to Increment x or x+1 from t-2 to t

Notation for Subjective Histories and Tokens

* Xs, Xo — histories, contributed by self and other threads;
* Ts, To — tokens, held by self and other threads;

* N, l— logical variables for histories and tokens.

Specification of getAndInc ()

{ Ts= 3, Xs=Ns,

Mo & Xo,
lo € To U Spent(Xo\ r]o) }

getAndInc()

{31, z, Ts= @, Xs=NsU res+2 ~ (I, 2),
No € Xo, lo € To U spent(Xo\ No),
|aSt(nsU r]o) <res+ 2+ 72 ‘ | N lo‘} @ C

Specification of getAndInc ()

initial tokens

— — S
{ (TS 9, Xs nS’J and self-history

No € Xo,
lo € To U Spent(Xo\ r]o) }

getAndInc()

{31, z, Ts= @, Xs=NsU res+2 (L, z),
No C Xo, lo C ToU Spent(Xo\ r]O),
|aSt(r]sU r]o) <res+ 2+ 72 ‘ | N lo‘} @ C

Specification of getAndInc ()

boundary on Initial
[Ts=@, Xs=Ns, other-history and tokens

Mo & Xo, 1‘(//’///’

Llo C To U Spent(Xo\ r]o)J }

getAndInc()

{31, z, Ts= @, Xs=NsU res+2 ~ (I, 2),
No C Xo, lo C ToU Spent(Xo\ r]O),
|aSt(r]sU r]o) <res+ 2+ 72 ‘ | N lo‘} @ C

Specification of getAndInc ()

{ Ts= 3, Xs=Ns,

No & Xo, f
nal tokens
lo € To U Spent(Xo\ ﬂo) } ancli Self—h<iStOF>/

getAndInc () ///

(3,2, (1s=9, Xs=nNsures+2 - (1, 2)
No € Xo, lo € To U spent(Xo\ No),
|aSt(r]sU r]o) <res+ 2+ 72 ‘ | N lo‘} @ C

Specification of getAndInc ()

{ Ts= 3, Xs=Ns,

r]O g XOJ
lo € To U Spent(Xo\ r]o) }
constraining final
getAndInc() other-history and tokens

{31, z, Ts= @, Xs= NsUres+2 ~ (|, Z),/

(ﬂo C Xo, lo € To U Spent(Xo\ r]O)),
|aSt(r]sU r]o) <res+ 2+ 72 ‘ | N lo‘} @ C

Specification of getAndInc ()

. Ts=9, Xs="Ns,

No € Xo,
lo € To U Spent(Xo\ r]o) }

getAndInc()

{31, z, Ts= @, Xs=NsU res+2 ~ (I, 2),
No C Xo, lo C ToU Spent(Xo\ r]O),
(laSt(r]sU r]o) <res+ 2+ 72 ‘ | N loD} @ C

\ result + 2 is

greater than any previous value
of the counters, recorded In history
(modulo past n present interference)

Implications of the derived spec

Trivial from Invariants: each result corresponds to a new history entry

- (Fh: different calls return distinct results (strong concurrent Counter))

- Ra: two calls, separated by period of quiescence, take eftect in
their sequential order (QC)

Implications of the derived spec

- Ry different calls return distinct results (strong concurrent counter)

- [Ra: two calls, separated by period of quiescence, take effect in
Ktheir seqguential order (QC)

J

Exercising Quiescent Consistency

“quiescent moment”

\\\\\\\Nfresl, -) ¢+ (getAndInc() e1);

(resz2, -) + (getAndInc() e2);

return (resi, res);

{;resi<resy!}

Generic spec for Interference

{Ts= @, Xs= @, lo < ToUspent(Xo) }

ei

{.Ts— B, Xs= i logToUSpen’[(Xo)}@ C

./

arpbitrary contribution to the history

Spec for parallel composition

{Ts: @, XS: ﬂs, no QXQ, lo € TQUSpent(Xo\ ﬂo), }

getAndInc() || e

31, z,N, Ts=@, Xs=NsuUNiures+2 - (L, Z), No € Xo,

lb € To U Spent(Xo\ No),
last(nsuno) <res.1+2+2|inb||@C

Spec for parallel composition

getAndInc() || e

{3, z, n;, Xs = NsU NiU res+2 (1, z)

@C

{Ts:@, Xs = s, }

(resi, -) + (getAndInc() || e1);

{3 N1, Ts = Q’(XS: n/S)n No gXO;
where(n’s=nsuniu res1+2 - JNo=xoand b =To

(resz, -) + (getAndInc() || e2);

(ANi,N2, L, Ts= D, Xs=N's, NoC Xo{)(s =N'sUN2U ress+2 -)
lo € To U Spent(Xo\ r]O),
(Iast(r]’s UNo)<res2+2+2]|lnl |})

return (resi, resy);

(resi, -) + (getAndInc() || e1);

lo = To

(resz, -) + (getAndInc() || e2);

lo € To U Spent(Xo\ no)

return (resi, res:z);

(resi1, -) + (getAndInc() || e1);

lo = To

(resz, -) + (getAndInc() || e2);

o € &

return (resi, res:z);

(resi1, -) + (getAndInc() || e1);

lo = To

(resz, -) + (getAndInc() || e2);

lo:@

return (resi, res:z);

(res1, -) ¢« (getAndInc() || e1);

lo = To
(resz, -) ¢ (getAndInc() || ez2);

lo:®
last(n’'suno) <res2+2+2|LNnlo|

return (resi, res:z);

(resi1, -) + (getAndInc() || e1);

lo = To
(resz, -) + (getAndInc() || e2);

lo:®
last(n’'suno) <reso+2+ 2| |

return (resi, res:z);

(resi1, -) + (getAndInc() || e1);

lo = To
(resz, -) + (getAndInc() || e2);

lo = %,
last(n’su No) < reszs + 2

return (resi, res:z);

(resi1, -) + (getAndInc() || e1);

n’S: r]sU mures1+2l—>— lo = To
(resz, -) + (getAndInc() || e2);
lo:®

last(n’su No) < resa + 2

return (resi, res:z);

(resi,

-) + (getAndInc()

N's=NsUMN1UTresi+2 m -

(resy,

return

-) + (getAndInc()

lo:®
resi1 +2<resos+ 2

(resi, resy);

|| e1)

(resi,

-) + (getAndInc()

N's=NsUMN1UTresi+2 m -

(resy,

return

-) + (getAndInc()

lo — @
(reS1 < resz)

(resi, resy);

|| e1)

Implications of the derived spec

- Ry different calls return distinct results (strong concurrent counter)

- [Ra: two calls, separated by period of quiescence, take effect in
Ktheir seqguential order (QC)

J

Summary of the proof pattern

* Express interference that matters via auxiliary state — fokens;
 Capture past interference and results in auxiliary histories;

e Assume closed world to bound interference.

Not discussed today

Full formal specitication of the counting network;

Formal proofs of QC and QQC properties for the network;
Discussion on applying the technique for QC-queues;
Spec and verification of java.util.concurrent.Exchanger;

Verification of an exchanger client in the spirit of
concurrency-aware linearizability (CAL).

o take away

Hoare-style Specitications
for Non-linearizable Concurrent Objects

 Compositional — substitution principle;
» Syntactic proof method — inference rules;

» Uniform — reasoning about objects and their
clients in the same proot system.

Specification is in the eye of the beholder.

Thanks!

